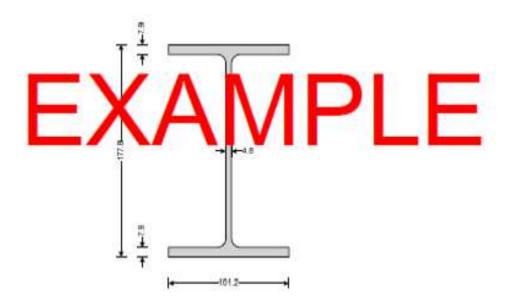


financia a a a a a a a a a a a a a a a a a a	6 a mala		Cha Ma	2-646
Project No	Example		Sht. No.	7of 16
Site Address	Example			
Subject	Extension and alteration works – Supporting Calculations			
Engineer	Peter V	Date:	8	

Maximum reaction at support A; RA_max = 15 kN; RA_min = 15 kN

Unfactored dead load reaction at support A; RA_Dead = 8.6 kN

Unfactored imposed load reaction at support A; R__imposed = 1.8 kN


Maximum reaction at support B; R_{B_max} = 15 kN; R_{B_min} = 15 kN

Unfactored dead load reaction at support B; R_{B_Dead} = 8.6 kN

Unfactored imposed load reaction at support B; R_{B_Imposed} = 1.8 kN

Section details

Section type; UKB 178x102x19 (Corus Advance); Steel grade; \$275

Classification of cross sections - Section 3.5

Tensile strain coefficient; $\varepsilon = 1.00$; Section classification; Plastic

Shear capacity - Section 4.2.3

Design shear force; $F_v = 15 \text{ kN}$; Design shear resistance; $P_v = 140.8 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment; M = 9 kNm; Moment capacity low shear; $M_c = 47.1 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment; M_b = 23.5 kNm; M_b / m_{LT} = 25.4 kNm

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lm} = 4.8 \text{ mm}$; Maximum deflection; $\delta = 1.353 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

NOTE: For Building Regulations Submission only, <u>not</u> for ordering materials. Principal Contractor is responsible for taking measurements on site, preparing construction drawings and safely erecting the proposed structural works. Team Design is not responsible for site supervision.